DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2023

CIRCUITS AND SYSTEMS

Wednesday 17 May 14:30
Time allowed: 2 hours

There are THREE questions on this paper.

Answer ALL questions.

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible First Marker(s) : P.Y.K. Cheung
Second Marker(s) : A. Zhao

Information for Candidates:

The following notation is used in this paper:

1. Unless explicitly indicated otherwise, digital circuits are drawn with their inputs on the left and their outputs on the right.
2. Within a circuit, signals with the same name are connected together even if no connection is shown explicitly.
3. The notation $\mathrm{X}[2: 0]$ denotes the three-bit number $\mathrm{X} 2, \mathrm{X} 1$ and X 0 . The least significant bit of a binary number is always designated bit 0 .
4. (a) Given that $1+x^{2}+x^{3}+x^{4}+x^{8}$ is a primitive polynomial, design in SystemVerilog an 8 -bit pseudo-random binary sequence generator module with the interface defined in Figure 1.1.

Assuming the sequence starts with the value 8 'h 02 , write down the first 5 values of the sequence.

```
module pseudo8
    input logic rst, // reset to initial state
    input logic clk, // clock input
    output logic [7:0] random // 8-bit pseudo random number
);
```

Figure 1.1
(b) An 8-bit microprocessor system with an address bus $a d d r[15: 0]$ and a data bus data[7:0] contains an address decoder module that produces three chip select signals: CS_FLASH, CS_RAM, and CS_IO. The Boolean equations for these three signals are:

$$
\begin{aligned}
& C S _F L A S H=\overline{A 15} \& \overline{A 14} \& \overline{A 13} \\
& C S _R A M=\overline{A 15} \& A 14 \\
& C S _I O-C S=A 15 \& \overline{A 14} \& \overline{A 13} \& A 12 \& A 11 \& \overline{A 10}
\end{aligned}
$$

(i) Determine the address range and number of locations associated with each chip select signal.
(ii) Implement the decoder circuit in SystemVerilog with the module interface defined in Figure 1.2.
(iii) The only RAM chips available are asynchronous $8 \mathrm{k} \times$ 8bit RAM devices with address signals A [12:0] and data signals $D[7: 0]$. Draw a schematic diagram showing how the microprocessor may be interfaced to one or more RAM chips to implement the random-access memory for this microprocessor system for the given address range for RAM.

```
module decoder (
    input logic [15:0] addr, // address bus
    output logic CS_FLASH, // chip-select signal for flash memory
    output logic CS_RAM, // chip-select signal for RAM
    output logic CS_IO // chip-select signal for input-output
);
```

Figure 1.2
(c) Figure 1.3 shows a pipelined circuit with three flip-flops: FF1, FF2 and FF3, and two combinational logic circuit modules: P and Q. FF1 and FF3 are rising-edge triggered while FF2 is falling-edge triggered. For all flip-flops, the clock-to-output delay is 1 ns and the setup time is 2 ns . The propagation delays of P and Q are in the range of 3 ns -5 ns and $4 \mathrm{~ns}-8 \mathrm{~ns}$ respectively. You may assume that the hold times of all flipflops are zero.
(i) If the clock signal is symmetrical and has a mark-space ratio of 1:1, derive the maximum operating frequency of the circuit.
(ii) If the clock signal is non-symmetrical, what is the maximum operating frequency of the circuit and with what mark-space ratio?

Figure 1.3
(d) Figure 1.4 shows the circuit of a finite state machine FSM with four internal states and an output signal OUT. The register is clocked by the signal CLOCK and synchronously reset to zero by the signal $R S T$. The logic block is defined by the following Boolean equations with $S 1$ and $S 0$ being the current state variables and $I N$ is the input signal:

$$
\begin{aligned}
& N S 1=(I N+\overline{S 1}) \cdot S 0+\overline{I N} \cdot S 1 \cdot \overline{S 0} \\
& N S 0=I N \cdot \overline{S 1}+\overline{I N} \cdot \overline{S 0} \\
& O U T=\overline{S 1} \cdot \overline{S 0}+S 1 \cdot S 0
\end{aligned}
$$

(i) Draw the state diagram of the FSM.
(ii) Based on the state diagram, design in SystemVerilog the module FSM using the interface signal shown in Figure 1.4.
(iii) The FSM is implemented on an Intel MAX10 FPGA which consists of arrays of logic elements (LEs), each containing a register and a 4-input Look Up Table. State with justifications the minimum number of logic elements required to implement this FSM.

module FSM (
module FSM (
input logic clk, // clock
input logic clk, // clock
input logic rst, // rest state machine
input logic rst, // rest state machine
input logic in, // input signal
input logic in, // input signal
output logic out // output signal
output logic out // output signal
);
);

Figure 1.4
(e) Figure 1.5 shows an inverting amplifier circuit constructed from an operational amplifier that has a single power supply at 5 V and with a gain-bandwidth product of 1 MHz , two resistors R1 and R2, and a voltage source at 2.5 V .
(i) Write down an equation for the gain of this amplifier.
(ii) Given that the amplifier has a gain of -14 and $\mathrm{R} 1=2.2 \mathrm{k} \Omega$, determine the value of R2.
(iii) A design is required to provide an overall gain of - 200 for a signal with frequency component from 1 kHz to 50 kHz . Explain why the circuit in Figure 1.5 is unable to achieve the specification.
(iv) Hence or otherwise, design an additional circuit using a second operational amplifier to meet the required specification.

Figure 1.5
2. The Appendix shows part of the datasheet for an LM397 analogue comparator. The same datasheet is also provided as a separate document for your convenience.
a) Briefly explain the significance of the following electrical characteristics from the datasheet with respect to the performance of the comparator:
(i) Input offset voltage $V_{O S}$
(ii) Output sink current Io
(iii) Voltage Gain A_{v}
(iv) Propagation Delay (High to Low) $t_{p H L}$
b) Figure 2.1 shows the LM397 comparator being driven by an input voltage $V_{I N}$, where

$$
V_{\text {in }}=2 \sin \left(2 \pi \times 5 \times 10^{5} t\right)+2.5 \mathrm{~V}
$$

Sketch the output waveform $V_{\text {OUT }}$ for $0 \leq t \leq 4 \mu \mathrm{~s}$, showing the time at which the output changes states. You may assume that the output of the comparator is driving a load resistance of $5.1 \mathrm{k} \Omega$ and a load capacitance of 15 pF , and you may use the typical values specified in the datasheet. State any other relevant assumptions.
c) What is "hysteresis" in the context of an analogue comparator circuit and why may it be useful?
d) Figure 2.2 shows a LM397 configure with hysteresis. What are the switching threshold voltages for this comparator circuit?

Figure 2.1

Figure 2.2
3. Figure 3.1 shows an analogue-to-digital converter (ADC) design using the dual-slope technique. The converter consists of an op-amp A1 configured as an integrator with an output signal X, an analogue comparator A2 that produces a digital compatible output Y, two 2-pole electronic switches S0 and S1, and a digital controller M1. Both A1 and A2 operate with a $\pm 15 \mathrm{~V}$ power supply.
The ADC works according to the timing diagram shown in Figure 3.2. When the ADC is in idle state, C 0 is low causing the switch S 0 to short circuiting the capacitor C . At time t_{0} a conversion is initiated with a positive edge on the start signal. The input signal Vin is applied to the integrator via the switch S1. After integrating the input voltage Vin for 20 ms , S1 switches the integrator input a -10 V reference voltage at time t_{l} so that the capacitor C is discharged at a constant current until the voltage at the output of the integrator reaches 0 V at time t_{2}. The converter 12-bit data is then sent to the output data [11:0], and the done output signal is asserted to indicate that the data is valid.
a) Explain why the duration $k=t_{2}-t_{1}$ is proportional to the input voltage Vin. Derive an equation that relates the duration k to Vin .
b) What is the voltage range of Vin within which the ADC can operate?
c) What is the maximum sampling rate that this ADC can operate and why?
d) Assume that $\mathrm{C}=1 \mathrm{uF}$, what value of R would you choose and why?
e) Figure 3.3 shows the design of the controller M1. It consists of three counters: CTR1, CTR2 and CTR3, and finite state machine FSM. Assuming that CLK is a symmetrical clock signal at 50 MHz , design the digital controller M1 that performs ADC conversion as one or more SystemVerilog modules.

Figure 3.1

Figure 3.2

Figure 3.3

Absolute Maximum Ratings
 (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance

Human Body Model
Machine Model
$\mathrm{V}_{\text {IN }}$ Differential
Supply Voltages
Voltage at Input Pins
Storage Temperature Range

2KV (Note 2) 200 V (Note 3) 30 V
30 V or $\pm 15 \mathrm{~V}$
-0.3 V to 30 V
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Junction Temperature (Note 4)	$+150^{\circ} \mathrm{C}$
Soldering Information	
Infrared or Convection (20 sec.)	$235^{\circ} \mathrm{C}$
Wave Soldering (10 sec.)	$260^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Supply Voltage, V_{S}	5 V to 30 V
Junction Temperature Range (Note 4)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance (Note 4)	
SOT23-5	$168^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics Unless otherwise specified, all limits guaranteed for at $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$. Boldface limits apply at temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Min } \\ (\text { Note } 6) \end{gathered}$	Typ (Note 5)	$\begin{gathered} \text { Max } \\ \text { (Note 6) } \end{gathered}$	Units
$\mathrm{V}_{\text {os }}$	Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \text { to } 30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		2	$\begin{gathered} 7 \\ 10 \end{gathered}$	mV
los	Input Offset Current	$\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$		1.6	$\begin{gathered} 50 \\ 250 \end{gathered}$	nA
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$		10	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	nA
I_{s}	Supply Current	$\mathrm{R}_{\mathrm{L}}=$ Open, $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$		0.25	0.7	mA
		$\mathrm{R}_{\mathrm{L}}=$ Open, $\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}$		0.30	2	
I_{0}	Output Sink Current	$\mathrm{V}_{\mathrm{IN}^{+}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{-}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	6	13		mA
leakage	Output Leakage Current	$\mathrm{V}_{\mathrm{IN}^{+}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{-}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}$		0.1		nA
		$\mathrm{V}_{\mathrm{IN}^{+}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{-}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}$		1		$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Voltage Low	$\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathbb{N}^{+}}=0 \mathrm{~V}, \mathrm{~V}_{\mathbb{N}^{-}}=1 \mathrm{~V}$		180	$\begin{aligned} & 400 \\ & 700 \end{aligned}$	mV
V_{CM}	Common-Mode Input Voltage Range	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ to 30 V (Note 7)	$\begin{gathered} \hline \mathrm{V}_{\mathrm{s}}-1.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{s}}-2 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	V

Electrical Characteristics Unless otherwise specified, all limits guaranteed for at $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$.
Boldface limits apply at temperature extremes. (Continued)

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
A_{V}	Voltage Gain	$\mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.4 \mathrm{~V}$ to 11.4 V, $\mathrm{R}_{\mathrm{L}}>=15 \mathrm{k} \Omega$ connected to V_{S}		120		$\mathrm{~V} / \mathrm{mV}$
		Propagation Delay (High to Low)	Input Overdrive $=5 \mathrm{mV}$ $\mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega$ connected to 5V, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		900	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Machine model, $O \Omega$ in series with 200 pF .
Note 4: The maximum power dissipation is a function of $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{\mathrm{J}(\mathrm{MAX})}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. All numbers apply for packages soldered directly onto a PC board.
Note 5: Typical values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: The input common-mode voltage of either input should not be permitted to go below the negative rail by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}_{\mathrm{S}}-1.5 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$.

